_	M.SCI	Year I Sem	Microp	processors	and	Micro	controllers	5

Unit	Sub Unit	Details	sub Total	Total
	a)	Digital systems- Number systems, Logic gates, Boolean algebra	4	
	b)	Flip-flops, Registers	4	1
I	c)	Encoders, Decoders, Multiplexers, Demultiplexers, Counters	4	18
	d)	DC Power supplies, UPS	3	1
	e)	Special Devices- CRT, Floppy, Hard Disk and Printer Controllers, KBD 827, Memory	3	
	a)	Evolution of Microprocessors and Digital computers	3	
II	b)	Memory (Storage type and devices), Buses, Bus Architecture	4	14
	c)	Intel 8085, Instruction cycle, Timing Diagrams	3	
	d)	Addressing modes and instructions	4	
	a)	Micro processors, 8086- Intel 8086, Block diagram, and operations	3	
111	b)	Registers, Interrupts, Bus cycle, Assembler Directives and operators.	3	14
	c)	Addressing modes and instructions with examples	3	
	d)	Interfacing peripheral devices- PPI 8257, PIC 8259, 8253 Counter/ Timer	5	
	a)	Micro controllers, 8051- Detailed Architecture of single chip Micro controller – 8051	5	
IV	1 01 1	Registers, Flags and PSW, Internal Memory, Special Function Registers, I/O Lines	5	14
	c)	Interrupts, Instructions with simple examples. Other 8 bit, 16 bit and 32 bit Micro controllers	4	
		Total No. of Teaching Hours	60	60

Department of Computer Science Academic Organizer 2015-2016 M.Sc Iyear I Sem, Computer Graphics Year-wise Lesson Plan

UNIT	Details	Periods Per Sub Unit	Total
	Algorithms for Drawing Line, Circle, Ellipse	10	
	Polygon Filling Algorithms, Scan Line		
1	Algorithms	3	15
	HardCopy Devices, Raster Scan, Random		1
	Scan	2	
	Area Primitives	2	
11	2-D Transformations	6	15
	Composite Transformations and Other	7	1
	Viewing Pipe Line	2	
Ш	Line Clippings	8	15
	Polygon Clippings	5	
	Curves and Polygon Representations	3	
IV	3-D Transformations and Projections	7	15
	Visible Surface Determination Algorithms	5	1
	TOTAL NO OF CLASSES		60

Department of Computer Science M.Sc Iyear- I Semester, Software Engineering Lesson Plan 2015-2016

UNIT	Details	Periods Per Sub Unit	Total
Т	Introduction to Software Engineering, Project Size and Categories	3	15
•	Planning a Software Project Software developing life cycle	9] 15
	Planning and Organization Structure	3	
	Software Cost Estimation, Least factor- Cost Estimation Techniques	4	
II	Maintenance Cost Estimation Software Requirement Specifications	4	11
	Formal Specification Techniques	3	
	Software Design-Fundamental design concepts and relations	3	
	Modularization -Module design techniques detailed design considerations	4	
Ш	Implementation Issues Structures Coding Techniques Coding Style Standards and guidelines Documentation	6	20
	Verification and Validation Techniques	4	
	Quality Assurance . Walk through and Inspection . Testing -formal_Verification	3	
	Software Tools Overview of CASE- Software Reliability	3	
IV	Software Errors- Faults Repairs and availability	2	9
14	Software Maintenance - Management aspects of maintenance-	tests.	9
	maintenancce tools and techniques	4	
	Revision Classes	5	5
	TOTAL NO OF CLASSES		60

Department of Computer Science Academic Organizer 2015-2016 M.Sc I/I MODERN OPERATING SYSTEM Year-wise Lesson Plan

UNIT	Details	Periods Per Sub Unit	Total
1	Introduction to OS structures, Memory Hierarchy, OS services and managements, process states.	8	15
	IPCs, CPU scheduling algorithms, problems of critical_region monitors	7	1
U	Deadlock detection, avoidance, distributed OS, Process synchronization, semaphores and implementations, physicaL and logical memory, fragmentation and paging.	10	
II	LRU, Optimal algorithms, segmentation, allocation of frames, file systems, free space management, disk management.	5	15
3	Swap space management, security and types, goals of protection and security management	7	
, ,	Recovery, concurrent access control, synchronization, check points, fault tolerance, commit protocol.	8	15
IV	Unix admn: device management, TCP/IP protocol, disk installation, unix file system, process management, DHCP settings	8	15
	Unix user management, file system management, network managements.	7	
TOTAL			60

M.Sc Iyear II Sem, Computer Networks and Internet Programming Year-wise Lesson Plan

UNIT	Details	Periods Per Sub Unit	Total
U	A Communication model - Data Communications - Data Communications networking -Protocols and protocol architecture - standards - Data transmission - Concepts and terminology Analog and Digital data transmission - <u>Transmission impairments</u> Data Encoding - Digital data digital signal - Digital data, Analog data, Analog signals - Analog data, digital signal - <u>Analog data, analog signal</u> Transmission media - Guided transmission media - Wireless transmission	5	15
11	The data communication interface - Asynchronous and Synchronous transmission - Line configurations - Interfacing. Data link control - flow control - Error detection - Error control - High-level data link control (HDLC) - Other data link protocols. Multiplexing - Frequency-division multiplexing - Synchronous time-division multiplexing - Statistical time-division multiplexing.	4	15
	LAN Technology - LAN architecture - Bus/Tree LANs - Ring LANs - Star LANs - Wireless LANs. LANs systems - Ethernet and Fast Ethernet (CSMA/CD) - Token ring and FDDI - 10 VG - Any LAN - ATM LANs - Fiber channel - Wireless LANs. Bridges - Bridge operations - Routing with bridges - ATM LAN simulation.	4 6 5	15
IV	Transport Layer and internet protocols Network Layer and its protocols Tcp and Udp.	5 5 5 5	15
	TOTAL NO OF CLASSES		60

Department of Computer Science Academic Organizer 2015-2016 M.Sc I Year- II Semester, Embedded Systems

UNIT	sub unit	Details	Sub Total	Total
	a)	Introduction to Embedded systems _ components, examples, embedded processors _8 bits architectures	4	
1	b)	micro controllers, JNEL processors, Motorola processors, RISC processors.	4	15
	c)	Memory systems — Technology, SRAM, EPROM, Flask, organization, polity Associations, packing,	4	
	d)	DRAM interface, DRAM refresh techniques, cache memory	3	1
	a)	Peripherals -ports, timers, ATC, Serial ports, UART, DMA, interfacing to the analog	8	
II	b)	world _A/D connections, codes, power control, interrupts and exceptions _source, recognitions, mechanisms, RISC exceptions, interrupt controllers, latency.	7	15
	a)	Real time operating system - Multi tasking, scheduling algorithms, priority inversion, tasks, threads and processors	8	
111	b)	memory model, memory management, address translators, commercial Operating Systems, resource protections, Linux, disk partitioning	7	15
	a)	Development of embedded system _requirement engineering,	5	
IV	b)	architecture and design, implementations aspects, validation and debugging.	5	15
	c)	Embedded relative systems, programming stream.	5	
		TOTAL NO OF CLASSES	60	60

DESIGN and ANALYSIS OF ALGORITHMS of M.Sc.(CS) II Semester

Year-wise Lesson Plan

UNIT	Details	Periods Per Sub	Total
	Elementary data structures, order notation, analysis of algorithms	5	
I	Review of Elementary Data Structures, Heap and Heap Sort.	3	13
	Hashing, sets representation, union, find operation	5	
	Divide and conquer and Greedy Model. Binary Search, finding, maximum and minimum.	6	
11	Merge sort, Quick sort and selection sorts.	5	13 18 15
II	Knapsack problem, Optimal storage on tapes, job sequences with dead lines, minimum spanning trees and single source shortest pattern.	7	18
	Dynamic Programming and traversal techniques, multistage graphs, shortest pattern.	5	
III	Optimal binary search trees, 0/1 Knapsack reliability design, traveling sales man problem	7	15
	Game trees, depth first search.	3	
	Back tracking and branch and bound technique, 8 queen problem, graph coloring, Hamilton cycles.	6	
IV	0/1 knapsack problems, traveling sales man problem.	5	16
	NP hard, completeness, cook's theorem, decision problem, node covering theorem.	5	
	TOTAL NO OF CLASSES		62

Unit	Sub Unit	Details	Total
	a)	UNIT – 1 J2EE Architecture	5
1	b)	Directory Services	5
1	c)	RMI	3
	d)	JDBC.	2
	a)	UNIT – 2 Web Containers, Java Servlets – Life Cycle	5
II	b)	Implementation, Request-response, Servlet sessions, Context- Collaborations,	5
	c)	JSP – Basic and Architecture, Tag extensions.	5
	a)	UNIT -3 JSP Tag Libraries	5
Ш	b)	Java Mail, JMS	5
	c)	J2EE Connector Architecture	5
	a)	UNIT - 4 EJB – Architecture and Design	5
IV	b)	Session Beans, Entity Beans	5
	c)	Container Services.	5
		Total No. of Teaching Hours	60

M.Sc 1st year II Semester ADVANCED JAVA PROGRAMMING

Department of Computer Science

M.Sc I. Year IISem, Automata Languages and Computation Year-wise Lesson Plan 2015-2016

UNIT	Details	Periods Per Sub Unit	Total
	Strings, alphabets and languages - Graphs and Trees, Finite automata	4	
I	Regular Expression - Finite state systems - Non deterministic finite automata	6	16
	Finite automata with E-moves-Regular expression.	6	
	Two-way Finite automata - Finite automata with output	4	
П	Pumping lemma for regular sets - Closure properties of regular sets - Decision		16
	algorithms for regular sets	7	
	The Myhill-Nerode theorem and minimization of finite automata.	5	
	Context-free grammars - Motivation and Introduction - Context-free grammars - Derivation trees	6	
111	Chomosky normal form - Greibach normal	5	17
	Push down automata, Properties of CFL.	6	
	Turning machines - Introduction - Truing machine model - Computable languages and functions		
IV	Church's hypothesis - Regular grammars -	4	11
	Unrestricted grammars	4	
	Context - Sensitive languages - Chomosky hierarchy.	3	
	TOTAL NO OF CLASSES	/	60

16

Department of Computer Science Academic Organizer 2015-2016 M.Sc Ilyear I Sem, Artificial Intelligence Year-wise Lesson Plan

Definition, Introduction to AI techniques, Problems, Problem spaces & search, Production system, Problem characteristics Heuristic Search: Generate & Test, Hill Climbing, Breadth-First search, Problem reduction, Constraint Satisfaction 5 Knowledge Representation, issues, representation & mapping, approaches, issues Frame Problem 5 Knowledge representation using predicate logic, predicate logic, 5 Procedural v/s Declarative knowledge Logic programming, Forward v/s Backward reasoning, matching Declarative knowledge representation, Semantic nets, Frames, Conceptual dependency, scripts, CYC 8 II Symbolic reasoning under uncertainty, non-monotonic reasoning, logic for nonmonotonic reasoning Implementation of depth-first search & breadth-first search 4 Statistical reasoning, Certainty factors & rule based systems Bayesian networks, Dempster-Shafer theory Fuzzy Logic 3 Game playing, minmax search, alpha-beta heuristics, iterative deepening 6 Planning, non-linear planning, hierarchical planning 6 Learning, Rote learning, Learning by taking advice, from examples & explanation based learning Connectist models, Neural Networks, applications 4 Natural Language Processing, syntax, semantic & pragmatic processing, perception Expert system representation & using domain knowledge, Expert system Neurons as functions, signal monotonicity, Biological activati	UNIT	Details	Periods Per Sub Unit	Total
reduction, Constraint Satisfaction 5 Knowledge Representation, issues, representation & mapping, approaches, issues Frame Problem 5 Knowledge representation using predicate logic, predicate logic, 5 5 Procedural v/s Declarative knowledge Logic programming, Forward v/s Backward reasoning, matching Declarative knowledge representation, Semantic nets, Frames, Conceptual dependency, scripts, CYC 8 II Symbolic reasoning under uncertainty, non-monotonic reasoning, logic for nonmonotonic reasoning Implementation of depth-first search & breadth-first search 4 Statistical reasoning, Certainty factors & rule based systems Bayesian networks, Dempster-Shafer theory Fuzzy Logic 3 Game playing, minmax search, alpha-beta heuristics, iterative deepening 6 Planning, non-linear planning, hierarchical planning 6 Learning, Rote learning, Learning by taking advice, from examples & explanation based learning Connectist models, Neural Networks, applications 4 Natural Language Processing, syntax, semantic & pragmatic processing, perception Expert system representation & using domain knowledge, Expert system shells Explanation knowledge acquisition 5 IV Theory of fuzzy sets: Definition, dilation, Concentration, Normalization 5		spaces & search, Production system, Problem characteristics Heuristic Search: Generate & Test, Hill Climbing, Breadth-First		
approaches, issues Frame Problem 5 Knowledge representation using predicate logic, predicate logic, 5 Procedural v/s Declarative knowledge Logic programming, Forward v/s Backward reasoning, matching Declarative knowledge representation, Semantic nets, Frames, Conceptual dependency, scripts, CYC 8 II Symbolic reasoning under uncertainty, non-monotonic reasoning, logic for nonmonotonic reasoning Implementation of depth-first search & breadth-first search 4 Statistical reasoning, Certainty factors & rule based systems Bayesian networks, Dempster-Shafer theory Fuzzy Logic 3 Game playing, minmax search, alpha-beta heuristics, iterative deepening 6 Planning, non-linear planning, hierarchical planning 6 Learning, Rote learning, Learning by taking advice, from examples & explanation based learning Connectist models, Neural Networks ,applications 4 Natural Language Processing, syntax, semantic & pragmatic processing, perception Expert system representation & using domain knowledge, Expert system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields 5 IV Theory of fuzzy sets: Definition, dilation, Concentration, Normalization 5			5	15
Procedural v/s Declarative knowledge Logic programming, Forward v/s Backward reasoning, matching Declarative knowledge representation, Semantic nets, Frames, Conceptual dependency, scripts, CYC8IISymbolic reasoning under uncertainty, non-monotonic reasoning, logic for nonmonotonic reasoning Implementation of depth-first search & breadth-first search4Statistical reasoning, Certainty factors & rule based systems Bayesian networks, Dempster-Shafer theory Fuzzy Logic 33Game playing, minmax search, alpha-beta heuristics, iterative deepening Planning, non-linear planning, hierarchical planning examples & explanation based learning Connectist models, Neural Networks ,applications4Natural Language Processing, syntax, semantic & pragmatic processing, perception Expert system representation & using domain knowledge, Expert system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields5IVTheory of fuzzy sets: Definition, dilation, Concentration, Normalization5		approaches, issues Frame Problem		
Forwardv/sBackwardreasoning, matchingDeclarative beclarative knowledge representation, Semantic nets, Frames, Conceptual dependency, scripts, CYCIISymbolic reasoning under uncertainty, non-monotonic reasoning, logic for nonmonotonic reasoning Implementation of depth-first search & breadth-first search4Statistical reasoning, Certainty factors & rule based systems Bayesian networks, Dempster-Shafer theory Fuzzy Logic 33Game playing, minmax search, alpha-beta heuristics, iterative deepening Planning, non-linear planning, hierarchical planning Learning, Rote learning, Learning by taking advice, from examples & explanation based learning Connectist models, Neural Networks ,applications4Natural Language Processing, syntax, semantic & pragmatic processing, perception Expert system representation & using domain knowledge, Expert system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields5IVTheory of fuzzy sets: Definition, dilation, Concentration, Normalization5			5	
II Symbolic reasoning under uncertainty, non-monotonic reasoning, logic for nonmonotonic reasoning Implementation of 4 Statistical reasoning, Certainty factors & rule based systems 4 Statistical reasoning, Certainty factors & rule based systems 3 Game playing, minmax search, alpha-beta heuristics, iterative 3 Vertication 6 Learning, non-linear planning, hierarchical planning 6 Learning, Rote learning, Learning by taking advice, from 4 examples & explanation based learning Connectist models, 4 Natural Language Processing, syntax, semantic & pragmatic 5 processing, perception Expert system representation & using 5 IV The brain as a dynamical system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields 5		Forward v/s Backward reasoning, matching Declarative knowledge representation, Semantic nets, Frames, Conceptual		
Statistical reasoning, Certainty factors & rule based systems Bayesian networks, Dempster-Shafer theory Fuzzy Logic 3 Game playing, minmax search, alpha-beta heuristics, iterative deepening 6 Planning, non-linear planning, hierarchical planning 6 Learning, Rote learning, Learning by taking advice, from examples & explanation based learning Connectist models, Neural Networks ,applications 4 Natural Language Processing, syntax, semantic & pragmatic processing, perception Expert system representation & using domain knowledge, Expert system shells Explanation knowledge acquisition 5 The brain as a dynamical system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields 5 IV Theory of fuzzy sets: Definition, dilation, Concentration, Normalization 5	II	Symbolic reasoning under uncertainty, non-monotonic reasoning, logic for nonmonotonic reasoning Implementation of		15
deepening Planning, non-linear planning, hierarchical planning6IIIPlanning, non-linear planning, hierarchical planning6Learning, Rote learning, Learning by taking advice, from examples & explanation based learning Connectist models, Neural Networks , applications4Natural Networks , applications4Natural Language Processing, syntax, semantic & pragmatic 		Statistical reasoning, Certainty factors & rule based systems		
III examples & explanation based learning Connectist models, Neural Networks , applications 4 Natural Language Processing, syntax, semantic & pragmatic processing, perception Expert system representation & using domain knowledge, Expert system shells Explanation knowledge acquisition 5 The brain as a dynamical system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields 5 IV Theory of fuzzy sets: Definition, dilation, Concentration, Normalization 5		deepening	6	
processing, perception Expert system representation & using domain knowledge, Expert system shells Explanation knowledge acquisition 5 Knowledge acquisition 5 The brain as a dynamical system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields 5 IV Theory of fuzzy sets: Definition, dilation, Concentration, Normalization 5		examples & explanation based learning Connectist models, Neural Networks ,applications	4	15
The brain as a dynamical system Neurons as functions, signal monotonicity, Biological activations & signals, neuron fields 5 IV Theory of fuzzy sets: Definition, dilation, Concentration, Normalization 5		processing, perception Expert system representation & using domain knowledge, Expert system shells Explanation	5	
IV Theory of fuzzy sets: Definition, dilation, Concentration, Normalization 5	2	The brain as a dynamical system Neurons as functions, signal		
Reasoning with fuzzy logic. Natural Language Computations.		Normalization		15
Fuzzy Matching algorithms 5			5	
TOTAL NO OF CLASSES		TOTAL NO OF CLASSES		60

Department of Computer Science Academic Organizer 2015-2016 M.Sc Ilyear I Sem, Network Security Year-wise Lesson Plan

UNIT	Details	Periods Per Sub Unit	Total
	Conventional encryption, security attacks, security, model for network security	5	
1	conventional encryption model, encryption	5	15
•	techniques, DES, triple DES	7	15
	key distribution, random number generation.	3	
	Public-key cryptology, principles of public - key		
п	cryptosystems	5	15
"	RSA algorithm, key management	6	15
	distribution of public keys, public key - distribution of s	4	
	Authentication and digital systems authenticate		
	requirements - functions cryptographic checksum,		
	hash function, digital signatures	6	
Ш	authentication protocols, kerboros, x-509 directory,		15
	authentication services	4	
	Diffie-Hellman key exchange, digital signature		
	standards.	5	
	Cryptographic algorithms, the MD 5 message digest		
	algorithm, secure has algorithm, international data		
IV	encryption algorithm	7	15
IV	LUC public key encryption - Electronic mail and	1040	
	management security	5	
	pretty good privacy (PGP), privacy enhanced mail	3	
	TOTAL NO OF CLASSES	/	60

r

M.Sc Ilyear I Sem, Computer Networks and Internet Programming Year-wise Lesson Plan

UNIT	Details	Periods Per Sub Unit	1
I	A Communication model - Data Communications - Data Communications networking -Protocols and protocol architecture - standards - Data transmission - Concepts and terminology Analog and Digital data transmission - <u>Transmission impairments</u> Data Encoding - Digital data digital signal - Digital data, Analog data, Analog signals - Analog data, digital signal - <u>Analog data, analog signal</u> Transmission media - Guided transmission media - Wireless transmission	5	15
II c	The data communication interface - Asynchronous and Synchronous transmission - Line configurations - Interfacing. Data link control - flow control - Error detection - Error control - High-level data link control (HDLC) - Other data ink protocols. Multiplexing - Frequency-division multiplexing - Synchronous time-division multiplexing.	5 4 8	15
L L Fi B L/	AN Technology - LAN architecture - Bus/Tree LANs - Ring ANs - Star LANs - Wireless LANs. ANs systems - Ethernet and Fast Ethernet (CSMA/CD) - oken ring and FDDI - 10 VG - Any LAN - ATM LANs - iber channel - Wireless LANs. ridges - Bridge operations - Routing with bridges - ATM AN simulation.	3 4 6 5	15
	ransport Layer and internet protocols etwork Layer and its protocols cp and Udp. DTAL NO OF CLASSES	5 5 5 5	15
110			

14

Department of Computer Science Academic Organizer 2015-2016 M.Sc II year- I Semester,00SD & UML

Year-wise Lesson Plan

UNIT	Details	Periods Per Sub	Total
	An overview of OOSD, Object oriented Methodologies,00SD		
•••	life cycle	3	
	Object basics ,Importance of modeling, Object oriented		
	modeling	3	
~.	An overview of UML, A conceptual model of the UML,		15
	SDLC	4	
	Building Blocks of UML, Rules of UML, Common		
	Mechanisms, UML		
	Architecture.	5	
	Structuraln modeling: classes, Relationships, Common		
	Mechanisms, Diagrams	3	
Ш	Class Diagrams, Advanced Structural ModelingAdvanced		15
	Classes, Advanced Relationships,	6	10
	Interfaces, Types, Roles, Instances, Object Diagrams	6	
	Behavioral Modeling: Interactions, Use Cases, Use Case		
e a	Diagrams	4	
	Activity Diagrams, Advanced Behavioral Modeling, Events		
ш	and Signals	6	15
	State Machines, Processes and		
\sim	Threads, Time and Space, Space Chart	5	
	Architectural Modeling: Components, Deployment,		40
IV	Collaborations	3	
	Patterns and FrameWorks, Component Diagrams	4	10
	Deployment Diagrams, Systems and Models	3	
	Revision Classes	5	5
	TOTAL NO OF CLASSES	/	60

Department of Computer Science Academic Organizer 2015-2016 M.Sc Ilyear- I Semester,Image Processing Year-wise Lesson Plan

UNIT	Details	Total	
I	Image formation and description-Digital image representation — Elements of Visual perception — Sampling and quantisation — Elements of digital image processing systems		
11	Image transform, Digital Image transforms — Fourier transform — Extension to 2D.DCT Walsh, Hadamard Transforms		
	Image Enhancements and Segmentation — Histograms modification — Image smoothing — Image Sharpening — Thresholding — Edge detection — segmentation point and region dependent techniques	15	
	Color image processing: Color fundamentals, color models psuedu- color image processing — intensity slicing gray level to color transformation, filtering approach, full — color image processing	10	
IV I	ge encoding — fidelity criteria — transform compression — K.L., rier,		
	DCT spatial compression run length coding —Hoffman coding —contour coding		
	restoration — Restoration models, inverse filtering — Least squares filtering — Recursive Filtering		
	TOTAL NO OF CLASSES	60	

	Academic Organizer 2015-2016 M.Sc Ilyear II Sem, Data Warehousing and Da	ta Minino	1
	Year-wise Lesson Plan		
UNIT	Details	Periods Per Sub Unit	Total
	Basic elements of DW, Dimension Modeling: Bus Architecture, Dimensional Modeling Techniques.	5	15
	Fact Table design, ROLAP querying and reporting and building dimensional models.	5	
	DW Architecture, Frameworks and approach. Back room data stores, services, management. Front room	5	
	data stores, services for data access.	5	
Ш	Aggregation goals, risks, design goals of aggregate navigation system.	4	14
	Physical design develop standards, data model, index plan, storage structure. Fact table loads and warehouse operations.	5	
Ш	Data mining(DM), definitions, KDD, DM techniques, applications. Methods: Priori, partition, pincer-search, FP-tree growth, border algorithm	8	14
	Clustering techniques and algorithms.	6	
- 14	Decision trees introduction, splitting indices and criteria. Decision construction algorithms, Pruning techniques.	7	17
)≥	Neural networks introduction, learning. Temporal mining, association rules, sequence mining.	5	
	Sequence mining algorithms: episode discovery, event prediction, spatial mining, clustering trends.	5	
	Total Classes	1	60

ž a

Department of Computer Science M.Sc Ilyear IISem, Mobile Computing Academic Organizer 2015-2016 Year-wise Lesson Plan

UNIT	Details	Periods Per Sub Unit	Total
	Introduction: Applications, Wireless Transmission:		
	Frequencies of radio Transmission	4	
	Signals, Antennas, Signal Propogation	2	1
~	Multiplexing Modulation, Spread Spectrum, Cellular System	4	16
	MAC: Motivation for Specialized MAC, SDMA, TDMA CDMA, Comparisons	6	
11	Wireless LAN: Infrared vs radio transmission, infrastructure and adhoc networks	4	
	1EE802.ll, HiperLan, Bluetooth, Wireless ATM: WATM Services, Reference Model	6	17
	Management, Addressing, Access point control protocol	7	
ш	Mobile network layer: Mobile IP, DHCP, Adhoc networks, Mobile Transpoñ layer: indirect Tcp, Snooping TCP	6	12
	Mobile Tcp, fast transmit/fast recovery, transmission/timeout freezing	3	
	Selective retransmission, transaction oriented TCP	3	
IV	Wireless Application Protocol: WAP Architecture, Components of WAP standards	4	10
	Design principles, Wireless Markup Language(WML), WML Basics Events, Tasks and Bindings	2	
	WML Basics, Events ,Tasks and Bindings Revision classes	4	5
	TOTAL NO OF CLASSES	- Ŭ	60